In mathematics, the trigonometric moment problem is formulated as follows: given a sequence { c k } k N 0 {\displaystyle \{c_{k}\}_{k\in \mathbb {N} _{0}}} , does there exist a distribution function μ {\displaystyle \mu } on the interval [ 0 , 2 π ] {\displaystyle [0,2\pi ]} such that: c k = 1 2 π 0 2 π e i k θ d μ ( θ ) , {\displaystyle c_{k}={\frac {1}{2\pi }}\int _{0}^{2\pi }e^{-ik\theta }\,d\mu (\theta ),} with c k = c ¯ k {\displaystyle c_{-k}={\overline {c}}_{k}} for k 1 {\displaystyle k\geq 1} . In case the sequence is finite, i.e., { c k } k = 0 n < {\displaystyle \{c_{k}\}_{k=0}^{n<\infty }} , it is referred to as the truncated trigonometric moment problem.

An affirmative answer to the problem means that { c k } k N 0 {\displaystyle \{c_{k}\}_{k\in \mathbb {N} _{0}}} are the Fourier-Stieltjes coefficients for some (consequently positive) Radon measure μ {\displaystyle \mu } on [ 0 , 2 π ] {\displaystyle [0,2\pi ]} .

Characterization

The trigonometric moment problem is solvable, that is, { c k } k = 0 n {\displaystyle \{c_{k}\}_{k=0}^{n}} is a sequence of Fourier coefficients, if and only if the (n 1) × (n 1) Hermitian Toeplitz matrix T = ( c 0 c 1 c n c 1 c 0 c n 1 c n c n 1 c 0 ) {\displaystyle T=\left({\begin{matrix}c_{0}&c_{1}&\cdots &c_{n}\\c_{-1}&c_{0}&\cdots &c_{n-1}\\\vdots &\vdots &\ddots &\vdots \\c_{-n}&c_{-n 1}&\cdots &c_{0}\\\end{matrix}}\right)} with c k = c k ¯ {\displaystyle c_{-k}={\overline {c_{k}}}} for k 1 {\displaystyle k\geq 1} , is positive semi-definite.

The "only if" part of the claims can be verified by a direct calculation. We sketch an argument for the converse. The positive semidefinite matrix T {\displaystyle T} defines a sesquilinear product on C n 1 {\displaystyle \mathbb {C} ^{n 1}} , resulting in a Hilbert space ( H , , ) {\displaystyle ({\mathcal {H}},\langle \;,\;\rangle )} of dimensional at most n 1. The Toeplitz structure of T {\displaystyle T} means that a "truncated" shift is a partial isometry on H {\displaystyle {\mathcal {H}}} . More specifically, let { e 0 , , e n } {\displaystyle \{e_{0},\dotsc ,e_{n}\}} be the standard basis of C n 1 {\displaystyle \mathbb {C} ^{n 1}} . Let E {\displaystyle {\mathcal {E}}} and F {\displaystyle {\mathcal {F}}} be subspaces generated by the equivalence classes { [ e 0 ] , , [ e n 1 ] } {\displaystyle \{[e_{0}],\dotsc ,[e_{n-1}]\}} respectively { [ e 1 ] , , [ e n ] } {\displaystyle \{[e_{1}],\dotsc ,[e_{n}]\}} . Define an operator V : E F {\displaystyle V:{\mathcal {E}}\rightarrow {\mathcal {F}}} by V [ e k ] = [ e k 1 ] for k = 0 n 1. {\displaystyle V[e_{k}]=[e_{k 1}]\quad {\mbox{for}}\quad k=0\ldots n-1.} Since V [ e j ] , V [ e k ] = [ e j 1 ] , [ e k 1 ] = T j 1 , k 1 = T j , k = [ e j ] , [ e k ] , {\displaystyle \langle V[e_{j}],V[e_{k}]\rangle =\langle [e_{j 1}],[e_{k 1}]\rangle =T_{j 1,k 1}=T_{j,k}=\langle [e_{j}],[e_{k}]\rangle ,} V {\displaystyle V} can be extended to a partial isometry acting on all of H {\displaystyle {\mathcal {H}}} . Take a minimal unitary extension U {\displaystyle U} of V {\displaystyle V} , on a possibly larger space (this always exists). According to the spectral theorem, there exists a Borel measure m {\displaystyle m} on the unit circle T {\displaystyle \mathbb {T} } such that for all integer k ( U ) k [ e n 1 ] , [ e n 1 ] = T z k d m . {\displaystyle \langle (U^{*})^{k}[e_{n 1}],[e_{n 1}]\rangle =\int _{\mathbb {T} }z^{k}dm.} For k = 0 , , n {\displaystyle k=0,\dotsc ,n} , the left hand side is ( U ) k [ e n 1 ] , [ e n 1 ] = ( V ) k [ e n 1 ] , [ e n 1 ] = [ e n 1 k ] , [ e n 1 ] = T n 1 , n 1 k = c k = c k ¯ . {\displaystyle \langle (U^{*})^{k}[e_{n 1}],[e_{n 1}]\rangle =\langle (V^{*})^{k}[e_{n 1}],[e_{n 1}]\rangle =\langle [e_{n 1-k}],[e_{n 1}]\rangle =T_{n 1,n 1-k}=c_{-k}={\overline {c_{k}}}.} As such, there is a j {\displaystyle j} -atomic measure m {\displaystyle m} on T {\displaystyle \mathbb {T} } , with j 2 n 1 < {\displaystyle j\leq 2n 1<\infty } (i.e. the set is finite), such that c k = T z k d m = T z ¯ k d m , {\displaystyle c_{k}=\int _{\mathbb {T} }z^{-k}dm=\int _{\mathbb {T} }{\bar {z}}^{k}dm,} which is equivalent to c k = 1 2 π 0 2 π e i k θ d μ ( θ ) . {\displaystyle c_{k}={\frac {1}{2\pi }}\int _{0}^{2\pi }e^{-ik\theta }d\mu (\theta ).}

for some suitable measure μ {\displaystyle \mu } .

Parametrization of solutions

The above discussion shows that the trigonometric moment problem has infinitely many solutions if the Toeplitz matrix T {\displaystyle T} is invertible. In that case, the solutions to the problem are in bijective correspondence with minimal unitary extensions of the partial isometry V {\displaystyle V} .

See also

  • Bochner's theorem
  • Hamburger moment problem
  • Moment problem
  • Orthogonal polynomials on the unit circle
  • Spectral measure
  • Schur class
  • Szegő limit theorems
  • Wiener's lemma

Notes

References

  • Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Philadelphia, PA: Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611976397. ISBN 978-1-61197-638-0.
  • Akhiezer, N.I.; Kreĭn, M.G. (1962). Some Questions in the Theory of Moments. Translations of mathematical monographs. American Mathematical Society. ISBN 978-0-8218-1552-6. {{cite book}}: ISBN / Date incompatibility (help)
  • Edwards, R. E. (1982). Fourier Series. Vol. 85. New York, NY: Springer New York. doi:10.1007/978-1-4613-8156-3. ISBN 978-1-4613-8158-7.
  • Geronimus, J. (1946). "On the Trigonometric Moment Problem". Annals of Mathematics. 47 (4): 742–761. doi:10.2307/1969232. ISSN 0003-486X. JSTOR 1969232.
  • Katznelson, Yitzhak (2004). An Introduction to Harmonic Analysis. Cambridge University Press. doi:10.1017/cbo9781139165372. ISBN 978-0-521-83829-0.
  • Schmüdgen, Konrad (2017). The Moment Problem. Graduate Texts in Mathematics. Vol. 277. Cham: Springer International Publishing. doi:10.1007/978-3-319-64546-9. ISBN 978-3-319-64545-2. ISSN 0072-5285.
  • Simon, Barry (2005). Orthogonal polynomials on the unit circle. Part 1. Classical theory. American Mathematical Society Colloquium Publications. Vol. 54. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-3446-6. MR 2105088.
  • Zygmund, A. (2002). Trigonometric Series (third ed.). Cambridge: Cambridge University Press. ISBN 0-521-89053-5.

(PDF) Szegő polynomials and the truncated trigonometric moment problem

Trigonometry Problem Solving PDF

Trigonometric Moment for k =0.1, 0.3, 0.5, 1 Download Scientific Diagram

3D problem med moment (Fysik/Universitet) Pluggakuten

Matheproblem? (Mathematik, Trigonometrie)